Name:

Instructor:

Math 10560, Exam 3 April 22, 2014

- The Honor Code is in effect for this examination. All work is to be your own.
- No calculators.
- The exam lasts for 1 hour and 15 min.
- Be sure that your name is on every page in case pages become detached.
- Be sure that you have all 10 pages of the test.

PLE	ASE	MARK YOUR	ANSWERS	WITH AN X,	not a circle!
1.	(a)	(b)	(c)	(d)	(e)
2.	(a)	(b)	(c)	(d)	(e)
3.	(a)	(b)	(c)	(d)	(e)
4.	(a)	(b)	(c)	(d)	(e)
5.	(a)	(b)	(c)	(d)	(e)
6.	(a)	(b)	(c)	(d)	(e)
7.	(a)	(b)	(c)	(d)	(e)
8.	(a)	(b)	(c)	(d)	(e)
9.	(a)	(b)	(c)	(d)	(e)
10.	(a)	(b)	(c)	(d)	(e)

Please do NOT	write in this hox
Multiple Choice	
11.	
12.	
13.	
Total	

Multiple Choice

1.(6 pts) Find the sum of the following series

(a)
$$\sum_{n=1}^{\infty} \left[\frac{\ln(n+1)}{n+2} - \frac{\ln(n+2)}{n+3} \right].$$

(b) This series diverges (c)
$$\frac{\ln(2)}{3} - \frac{\ln(3)}{4}$$

(d) $\frac{\ln(2)}{3} - 2$ (e) $\frac{\ln(2)}{3} - 1$

2.(6 pts) Use the comparison test or limit comparison test to determine which of the following series are convergent:

(I)
$$\sum_{n=2}^{\infty} \frac{\sin^2(n) + 1}{2\sqrt{n}}$$
 (II) $\sum_{n=2}^{\infty} \frac{n^2 + 2n + 1}{n^4 + 2n^2 + 1}$ (III) $\sum_{n=1}^{\infty} \frac{1}{n2^n}$

Which of the following statements is true?

- (a) Only I and II converge (b) All three converge
- (c) Only II converges (d) Only II and III converge
- (e) All three diverge

Name:	
Instructor:	

3.(6 pts) Consider the following series

(I)
$$\sum_{n=2}^{\infty} \frac{(-1)^n}{\sqrt{n}}$$
 (II) $\sum_{n=2}^{\infty} \frac{n}{\ln(n^2)}$ (III) $\sum_{n=1}^{\infty} \frac{3^{n+1}}{2(n!)}$

Which of the following statements is true?

- (a) Only I and II converge (b) Only III converges
- (c) All three converge (d) All three diverge
- (e) Only I and III converge

4.(6 pts) Consider the following series

(I)
$$\sum_{n=1}^{\infty} \frac{(n+1)!}{n^2 \cdot e^n}$$
 (II) $\sum_{n=1}^{\infty} \left(\frac{2^{n+1}}{2^n+1}\right)^n$.

Which of the following statements is true?

- (a) They both diverge. (b) They both converge.
- (c) (I) converges and (II) diverges.
- (d) (I) diverges and (II) converges.
- (e) Deciding whether these series converge or diverge is beyond the scope of the methods taught in this course.

Name:	
Instructor:	

5.(6 pts) Which one of the following series converges conditionally?

(a)
$$\sum_{n=1}^{\infty} \frac{\cos^2(n)}{3^n}$$
 (b) $\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n+1}}$ (c) $\sum_{n=1}^{\infty} \frac{(-1)^n}{5^n}$
(d) $\sum_{n=1}^{\infty} \frac{(-1)^n e^n}{5^n}$ (e) $\sum_{n=1}^{\infty} \frac{(-1)^n n^3}{5^n}$

(d)
$$\sum_{n=1}^{\infty} \frac{(-1)^n e^n}{e^n + 1}$$
 (e) $\sum_{n=1}^{\infty} \frac{(-1)^n n^n}{n^5 + 1}$

6.(6 pts) Find a power series representation for the function

$$\frac{x^2}{(1-x^3)^2}$$

in the interval (-1, 1).

(Hint: Differentiation of power series may help).

(a)
$$\sum_{n=1}^{\infty} (-1)^n 3nx^{3n-1}$$
 (b) $\sum_{n=1}^{\infty} nx^{n-1}$ (c) $\sum_{n=1}^{\infty} \frac{x^{3n+1}}{3n+1}$
(d) $\sum_{n=1}^{\infty} nx^{3n-1}$ (e) $\sum_{n=1}^{\infty} x^{3n}$

7.(6 pts) Use you knowledge of a well known power series to calculate the limit

$$\lim_{x \to 0} \frac{2\cos(x^2) - 2 + x^4}{x^8}$$
(a) $\frac{2}{8!}$
(b) $\frac{1}{12}$
(c) $\frac{1}{2}$
(d) The limit does not exist
(e) 2

8.(6 pts) Which of the following is the third Taylor polynomial of the function

$$f(x) = \sin\left(\frac{x}{2}\right)$$
 centered at $a = \pi$?

(a) $1 - \frac{x^2}{4(2!)}$ (b) $1 - \frac{\left(x - \frac{\pi}{2}\right)^2}{4(2!)}$ (c) $1 - \frac{(x - \pi)^2}{4(2!)}$ (d) $(x - \pi) - \frac{(x - \pi)^3}{3!}$ (e) $(x - \pi) - \frac{(x - \pi)^3}{2}$

9.(6 pts) Compute the radius of convergence, R, of the following power series

(a) R = 2 (b) R = 5 (c) R = 1

(d) R = 1/2 (e) $R = \infty$

10.(6 pts) Which of the following gives a power series representation of the function

$$f(x) = e^{-\frac{x^2}{2}}$$

(a)
$$\sum_{n=0}^{\infty} \frac{(-1)^n x^{n+2}}{2^n n!}$$
 (b) $\sum_{n=0}^{\infty} \frac{(-1)^n x^{n+2}}{2^n (2n)!}$
(c) $\sum_{n=0}^{\infty} \frac{x^{2n}}{(2n)!}$ (d) $\sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{n!}$
(e) $\sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{2^n n!}$

Partial Credit

You must show your work on the partial credit problems to receive credit!

11.(10 pts.) (a) Consider the series $\sum_{n=3}^{\infty} (-1)^n \frac{(\ln n)^2}{n}$. Fill in the following blanks and be sure to **show your work**. In each case indicate which test you are using and show how it is applied.

• Is the series absolutely convergent? (YES or NO) _____

• Is the series convergent? (**YES** or **NO**) _____

12.(15 pts.) (a) Give the Taylor series expansion for the antiderivative

$$F(x) = \int \cos\left(\sqrt{x}\right) \, dx$$

about 0 (McLaurin Series) where F(0) = 0. Hint: Use your knowledge of a well known series.

(b) Use part (a) to find an expression for the definite integral

$$\int_0^1 \cos(\sqrt{x}) \, dx$$

as a sum of an infinite series.

(c) Use the alternating series estimation theorem to estimate the value of the above definite integral so that the error of estimation is less than $\frac{1}{100}$. (you may write your answer as a sum of fractions).

Name: ______ Instructor: ______

13. (15 pts.) Find the radius of convergence and interval of convergence of the following power series:

$$\sum_{n=0}^{\infty} \frac{(-1)^n (x+3)^n}{5^n \sqrt{n+1}}.$$

R.O.C._____

I.O.C.____

The following is the list of useful trigonometric formulas:

 $\sin^2 x + \cos^2 x = 1$ $1 + \tan^2 x = \sec^2 x$ $\sin^2 x = \frac{1}{2}(1 - \cos 2x)$ $\cos^2 x = \frac{1}{2}(1 + \cos 2x)$ $\sin 2x = 2\sin x \cos x$ $\sin x \cos y = \frac{1}{2}(\sin(x - y) + \sin(x + y))$ $\sin x \sin y = \frac{1}{2}(\cos(x - y) - \cos(x + y))$ $\cos x \cos y = \frac{1}{2}(\cos(x - y) + \cos(x + y))$ $\int \sec \theta = \ln|\sec \theta + \tan \theta| + C$

Name: _____

Instructor: ANSWERS

Math 10560, Exam 3 April 22, 2014

- The Honor Code is in effect for this examination. All work is to be your own.
- No calculators.
- The exam lasts for 1 hour and 15 min.
- Be sure that your name is on every page in case pages become detached.
- Be sure that you have all 10 pages of the test.

PLE.	ASE	MARK YOUR	ANSWERS	WITH AN X,	not a circle!
1.	(ullet)	(b)	(c)	(d)	(e)
2.	(a)	(b)	(c)	(•)	(e)
3.	(a)	(b)	(c)	(d)	(ullet)
4.	(•)	(b)	(c)	(d)	(e)
5.	(a)	(•)	(c)	(d)	(e)
6.	(a)	(b)	(c)	(•)	(e)
7.	(a)	(ullet)	(c)	(d)	(e)
8.	(a)	(b)	(•)	(d)	(e)
9.	(•)	(b)	(c)	(d)	(e)
10.	(a)	(b)	(c)	(d)	(ullet)

Please do NOT	write in this box.
Multiple Choice	
11.	
12.	
13.	
Total	